Mean Value Theorems

IMPORTANT

Mean Value Theorems: Overview

This topic covers concepts, such as, Mean Value Theorems, Rolle's Theorem, Cauchy's Mean Value Theorem & Solving Inequalities Using LMVT etc.

Important Questions on Mean Value Theorems

HARD
IMPORTANT

The following function:   f( x )=sinx+cosx,x[ 0, π 2 ] is verifying which of the following rule or theorem:

MEDIUM
IMPORTANT

If a,b,c,dR such that a+2cb+3d+43=0, then the equation ax3+bx2+cx+d=0 has -

MEDIUM
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

nln1+1n1   n1

EASY
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

128<2813-3<127

EASY
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

cosa-cosba-b

EASY
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

sinx<x  xR+.

MEDIUM
IMPORTANT

Verify the Cauchy's mean value theorem for the functions

f(x)=1x, and g(x)=x2-4 on the interval 1,2.

MEDIUM
IMPORTANT

Check the validity of Cauchy's mean value theorem for the functions

f(x)=x3, and g(x)=x2 on the interval 0,2.

MEDIUM
IMPORTANT

Verify Cauchy's mean value theorem for the functions f(x)=sinx, and g(x)=cosx in 0,π2.

MEDIUM
IMPORTANT

Check the validity of Cauchy's mean value theorem for the functions

f(x)=x4, and g(x)=x2 on the interval 1,2.

HARD
IMPORTANT

 If fx=x-px-qx-r, where p<q<r, are real numbers, then the application of Rolle's theorem on f leads to

MEDIUM
IMPORTANT

If f  and  g are differentiable functions in [0, 1] satisfying f 0 = 2 = g 1 g 0 = 0  and  f 1 = 6 then for some c ] 0 1 [  

MEDIUM
IMPORTANT

If the Rolle's theorem holds for the function fx=2x3+ax2+bx in the interval 1,1 for the point c=12, then the value of 2a+b is:

 

MEDIUM
IMPORTANT

Applying mean value theorem on f(x)=logex; x1,e the value of c=

MEDIUM
IMPORTANT

The point on the curve y=x2, where the tangent is parallel to the line joining the points (1, 1) and (2, 4) is

MEDIUM
IMPORTANT

The c value  of Lagrange’s mean-value theorem for fx=25-x2 on 1,5 is k. Find k.

MEDIUM
IMPORTANT

The point on the curve y=x3-3x, where the tangent to the curve is parallel to the chord joining (1,2) and (2, 2) is 

MEDIUM
IMPORTANT

The c value  of Lagrange’s mean-value theorem for f(x)=x+2  on 4,6 is k2+2k. Find k.

MEDIUM
IMPORTANT

The c value  of Lagrange’s mean-value theorem for fx=x3-3x2+2x on 0,12 is equal to 1-k12. Find k.

MEDIUM
IMPORTANT

Find a point on the curve y=x3, where the tangent to the curve is parallel to the chord joining the points (1, 1) and (3, 27).